

6" Sloped Trench Drain

Built to last. Designed with strength in mind.

The 6" Sloped trench drain series is one of the most used and versatile drainage systems used today. This this system can be furnished with heavy duty galvanized steel grates or heavy duty cast iron grates. The grate can easily be removed to clean the drain. Versatile, easy to assemble, strong, durable and tough. Drainage that lasts. This system is every design teams dream. Designed to last for decades.

Features:

- Easier handling and installation than concrete systems
- 0.7% pre-sloped channels maintain optimal flow rates
- HDPE material offers high chemical resistance and durability
- ProFit locking system locks grate to integral frame for stability
- Channels come numbered with arrows for easy install

P: 646-227-0910 info@swiftdrain.com

Your #1 Source for Trench Drain Products

- Components join together without couplers
- Drain from end of outlet or built-in bottom outlet
- Multiple channel depth and grate options available

When it comes to trench drains, this trench drain system is the most customizable and dependable. It's continually the go-to drainage solution for driveways, parking areas, warehouses, loading docks, pools, wash-down areas, athletic fields, and other areas that experience surface run-off. Durably made from HDPE, this system offers the strength of a concrete trench system without the costly installation. Instead, this modular system uses interlocking 0.7% sloped and neutral channels—no couplers required. Simply choose amongst its many design, color, and size options to create a custom trench drain system that meets the drainage needs of your residential, commercial, municipal, or industrial property.

Easy to Install

The lightweight modular components allow for easier handling and installation. Each channel has a tongue and groove connection with tabs that hold the channels together. In addition, the pieces are marked with numbers and arrows to avoid mistakes during install. LeveLoc™ re-bar supports on the side hold the rebar in place too. The catch basin with optional trash bucket also locks in with the same tongue and groove connection. For this system, you only need screws to secure the grates and cap off the outlets that aren't in use. Compared to installing a traditional concrete system, installing this plastic trench drain system is budget-friendly and fast.

Grate Width: 6"

Thickness: ¾"

Sections: 24

Polymer Grates

Grate Width: 6"

Thickness: 3/4"

Sections: 24"

Class B

Material: Polymer

Open Area: 40 sq in / ft

Inflow: 50 GPM / FT

H20: Yes

Your #1 Source for Trench Drain Products

Material Manufactured from molded, structural foam HDPE with UV inhibitors.

Channel Sizes 48" length, 6" width, 3.998" to 12.062" inner depth range

Grate Sizes 24" length, 6" width

Grate Materials Stainless Steel, Galvanized Steel, Cast Iron, Ductile Iron, Plastic (struc-

tural foam polyolefin

Grate Colors/Finishes Metallic finishes, black, gray, white, green, sand, red

Load Class A = 1-160 psi.

Class B = 61-175 psi. Class C = 176-325 psi. Class D = 326-575 psi.

Loads are based on encasing product in concrete and grate selection.

Strength Material shall withstand a compressive strength of 2900 psi.

Material tensile stress shall be 4550 psi and material flexural strength

shall be 5800 psi.

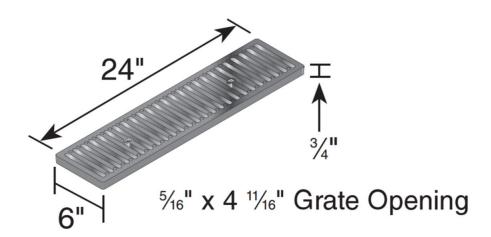
Channel Weight Per Unit Ranges between 7.452 lbs. for shallow channel to 16.06 lbs for

deep channel.

Grate Weight Per Unit Ranges between 2.92 lbs. for polyolefin to 16.0 lbs. for ductile iron.

Unique Product Features Lower installed cost than polymer concrete. Fewer parts required.

Pre-Sloped Run Lengths 194 feet of continous slope


266 feet w/neutral sections added

Pipe Outlet Sizes 3", 4", 6", 8" Pipe.

Grate Specifications

Channel Specifications

 Channel Length
 4' (48")

 Channel Width (OD)
 6-5/8"

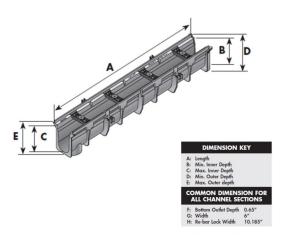
 Channel Width (ID)
 4"

Outlet Sizes 4" S&D, 4" Sch. 40

Available Slope 0.7%

Max. Flow Rate 70 GPM, per foot

Load Recommendation Guide


Class D

- Loads of 326-575 psi.
- Recommended for heavy-duty hard tire forklifts at speeds less than 20 m.p.h., H-20 rated.

Note: Some installations may require a concrete collar to meet load rating. Loads are based on encasing product in concrete. Product must be installed using NDS instructions.

Each channel is pre sloped and comes numbered. Channels fasten with slip joints.

Channel Specifications

DIMENSIONS (INCHES)										
A	В	С	D	E						
48"	3.998	3.998	5.354	5.760						
48"	3.998	4.334	5.690	5.770						
48"	4.334	4.334	5.692	6.103						
48"	4.334	4.670	6.026	6.106						
48"	4.670	5.006	6.362	6.442						
48"	5.006	5.342	6.698	6.778						
48"	5.342	5.342	6.700	7.111						
48"	5.342	5.678	7.034	7.114						
48"	5.678	6.014	7.370	7.450						
48"	6.014	6.350	7.706	7.786						
48"	6.350	6.350	7.708	8.119						
48"	6.350	6.686	8.042	8.122						
48"	6.686	7.022	8.378	8.458						
48"	7.022	7.358	8.714	8.794						
48"	7.358	7.358	8.716	9.127						
48"	7.358	7.694	9.050	9.130						
48"	7.694	8.030	9.386	9.466						
48"	8.030	8.366	9.722	9.802						
48"	8.366	8.366	9.724	10.135						
48"	8.366	8.702	10.058	10.138						
48"	8.702	9.038	10.394	10.474						
48"	9.038	9.374	10.730	10.810						
48"	9.374	9.374	10.732	11.143						
48"	9.374	9.710	11.066	11.146						
48"	9.710	10.046	11.402	11.482						
48"	10.046	10.382	11.738	11.818						
48"	10.382	10.382	11.740	12.151						
48"	10.382	10.718	12.074	12.154						
48"	10.718	11.054	12.410	12.490						
48"	11.054	11.390	12.746	12.826						
48"	11.390	11.390	12.785	13.158						
48"	11.390	11.726	13.082	13.162						
48"	11.726	12.062	13.418	13.498						

P: 646-227-0910 info@swiftdrain.com

Chemical Resistance

The following results were derived from testing using standard procedures including ASTM D543 "Standard Test Method for Resistance of Plastics to Chemical Reagents." Actual results will vary for different applications depending on environmental conditions for each particular application and other modifying factors. The following table assumes ambient temperature of 75 degrees Fahrenheit.

		~ ······	~						G			
Chemicals	%	ABS	Polyolefin	Polystyrene	PVC	Brass	Cast Iron	Ductile Iron	EPDM	Buna-n	Viton	
Acetic Acid	25	-	180	A	73	С	С	С	180	С	С	
Acetic Acid	50	-	140	A	73	C	C	C	140	C	C	
Acetic Acid	80	-	100	В	73	C	C	C	100	C	C	
Acetone	-	-	73	C	C	A	A	A	130	C	C	
Aluminum Chloride	Sat	-	180	A	140	C	C	C	210	70	150	
Aluminum Fluoride	Sat		_	В	73	C	C	C	210	180		
Aluminum Sulfate	Sat	-	180	В	140	C	C	C	210	200	150	
Ammonium Acetate	Sat	-	73	В	140	C	-	-	140	-	-	
Ammonium Chloride	Sat	-	180	A	140	C	C	C	210	180	A	
Ammonium Hydroxide	10	-	180	В	225	C			210	70	A	
Ammonium Sulfate	2	2	180	A	140	C	В	В	210	180	A	
Amyl Alcohol	-	-	180	A	100	A	В	В	210	140	A	
Barium Chloride	Sat	-	180	A	180	A	В	В	250	180	A	
Barium Hydroxide	Sat	-	180	-	140	A	В	В	250	180	A	
Benzene	-	-	C	C	C	A	A	A	C	C	A	
Benzoic Acid	All	_	140	A	140	C	C	C	C	C	_	
Borax	Sat	-	180	A	140	A	A	A	210	140	A	
Boric Aid	Sat	-	180	A	140	В	В	C	210	140	A	
Calcium Chloride	-	100	180	A	140	В	A	A	210	100	A	
Calcium Hydroxide	μ.	-	180	1=	140	C	C	C	210	140	A	
Carbon Tetrachloride	2	_	C	1121	73	A	C	C	C	C	A	
Chlorine Gas (Dry)ppm	<150	-	C	В	120	C	В	A	C	C	В	
Chlorine Gas (Wet) ppm	>150	C	C	В	120	C	C	C	C	C	В	
Chlorinated Water ppm	<3500	-	-	В	140	C	-	-	В	C	В	
Chlorinated Water ppm	>3500	-	C	В	C	C	-	_	C	C	В	
Chromic Acid	10	C	150	В	140	C	C	C	70	C	В	
Chromic Acid	30	C	150	В	140	C	C	C	C	C	-	
Chromic Acid	40	C	150	В	140	C	C	C	C	C	-	
Chromic Acid	50	C	C	В	75	C	C	C	C	C	-	
Citric Acid	Sat	-	180	A	140	C	C	C	210	70	A	
Copper Chloride	Sat	_	-	1	140	C	C	C	210	180	150	
Copper Cyanide	-	-	4	-	140	C	C	C	210	180	-	
Copper Nitrate	30	-	-	11-	140	C	C	C	210	B to 70) -	
Copper Sulfate	Sat	_	120	A	140	C	C	C	210	180	150	
Creosote	_	-	-	-	73	В	A	A	C	73	В	
Crude Oil	2	_	2	92	140	C	C	C	C	70	2	
Dibutyl Ether	-	-	_	-	-	-	_	_	C	C	C	
Diesel Fuel	-	-	-	-	140	A	A	A	C	70	-	
Ethyl Alcohol	-	-	180	-	140	A	A	A	170	180	A	

P: 646-227-0910 info@swiftdrain.com

	%	ABS	Polyoletin	Polystyrene	PVC	Brass	Cast Iron	Ductile Iron	EPDM	Buna-n	Viton
Ethyl chloride	Dry	-	73	С	С		A	A	B to 70	C	В
Ethylene Glycol	-	-	120	A	140	A	A	A	210	180	A
Ethyl Ether	-	*	C	-	C	-	-	-	C	C	
Fatty Acids	2.7	2	120	4	140	C	C	C	C	140	-
Formic Acid	2	2	73	В	73	21	C	C	200	C	C
Fructose	-	-	-		140	-	A	A	175	140	-
Gasoline(Leaded)	-	-	C	C	C	A	A	A	C	70	A
Gasoline(Unleaded)	-	-	C	C	C	A	A	A	C	70	A
Glycerine	20	2	180	A	140	A	A	A	200	70	A
Hydrolic Oil	_	2	-	2	73	2	A	A	C	C	-
Hydrobromic Acid	20	-	120	2	140	C	C	C	140	C	_
Hydrobromic Acid	50	-	-	-	140	C	C	C	140	C	-
Hydrochloric Acid	<25	-	150	В	140	C	C	C	150	C	-
Hydrochloric Acid	37	_	150	В	140	C	C	C	150	C	_
Hydrocyanic Acid	10	_	73	_	140	C	C	C	200	70	-
Hydrogen Peroxide	50	_	150	A	140	Č	C	Č	100	C	A
Hydrogen Peroxide	90	_	-	A	140	č	Č	č	C	C	В
Inks	-				- 110	Č	Č	C	_	70	-
Jp-4 Fuel		2		_	C	A	A	Ă	C	70	A
Kerosene	2	C	73	С	140	A	A	A	C	140	A
Lactic Acid	25	_	150	A	140	Ċ	C	B	70	-	A
Lactic Acid	80		150	A	73	c	Č	В	70	C	A
Lead Acetate	Sat		180	A	140	-	C	C	210	70	-
Linseed Oil	-	-	150	A	140	Ā	A	A	B to 70		A
Magnesium Chloride	Sat		180	A	140	B	C	C	170	180	150
Magnesium Sulfate	Sat	-	180	A	140	A	A	A	175	180	150
Mercury	-	-	150	A	140	C	A	A	210	140	A
Mineral Oil		70	120	A -	140	A	A	A	C C	140	A
Naphtha		B to 7		C	140	-	A	A	c	140	п
Nickel Sulfate	Sat	D 10 /	180	A	140		C	C	210	140	150
Nitric Acid	<10	73	140	B	140	C	C	C	70	C	B
Nitric Acid	30	C	73	В	140	C	c	c	70	C	В
	40	C	C	В	100	c	C		C	C	В
Nitric Acid	50			В	100			C			В
Nitric Acid	70	C	C	В		C	C	C	C	C	В
Nitric Acid				200	73				C		
Nitric Acid	fuming	C	C	С	C	C	C	C	2000	C	В
Nitrous Acid	10	7	100	_	73	C	C	C	150	C	_
Oxalic Acid	50 10	7	180 180	A A	140 140	C	C	C	150 140	C 70	A A
Phosphoric Acid	50	-		A	T 10 10 10 10 10 10 10 10 10 10 10 10 10	C	C	C	70	C	A
Phosphoric Acid	100000000000000000000000000000000000000	-	180		140				5.55		1000000
Phosphoric Acid	85	-	180	A	140	C	C	С	70	C	1025
Phosphorus Trichloride	-	-	-	-	C	-	-	-	-	C	
Picric Acid	10	C	170	-	170	C	C	C	140	C	-
Potassium Bicarbonate	Sat	=	170	7.	140	7	-	_	170	70	
Potassium Bromide	-	-	180	A	140	-	C	C	170	180	-
Potassium Carbonate	20	70	140	A	280	В	A	A	170	180	1723
Potassium Chlorate	20	7	180	A	140	1	A	A	140	B to 70	-
Potassium Chloride	-	-	180	A	140	A	В	В	210	180	A
Potassium Cyanide	-	+	-	1	140	C	В	В	140	180	A
Potassium Dichromate	Sat	-	-	В	140	-	В	В	170	180	-
Potassium Ferricyandide	-	-	-	-	140	-	В	В	140	70	-
Potassium Hypochlorite	30	C	C	-	140	-	-	5	С	C to 70	-
Potassium Iodide	-	-	73	-	-	-	-	-	140	100	-
Potassium Nitrate	= 1	-	-	A	140	В	В	В	210	180	+
Potassium Sulfate	¥0	-	180	A	140	В	A	A	210	140	A